
© Harry Parsonage September 2008, Updated November 2009, July 2010

The Meaning

of

Linkfiles In Forensic Examinations

A look at the practical value to forensic
examinations of dates and times, and
object identifiers in Windows shortcut
files.

 © Harry Parsonage September 2008, Updated Nov 2009, July 2010

1

Introduction

I have always considered that there should be some forensically useful conclusions that could be

drawn from the different dates and times associated with Windows Shortcut Files (referred to here

as link files). A common request to an examiner might be “can you tell whether the suspect has

viewed this file after it has been downloaded”; the aim of this paper is to answer that question and

at the same time provide other related information that will be of practical value in computer

examinations.

Each link file has its own Created, Modified and Accessed dates and within each link file there are

Created, Modified and Accessed dates which belong to the target file. In addition, if the target file

still exists on the media, that file has its own three dates.

The purpose of this paper is to explore how these nine dates relate to each other and what

conclusions can be drawn from the relationships that exist. The reader is invited to participate in the

development of this paper by carrying out their own experiments and reporting the results back to

the authori.

The only link files referred to in this paper are those which link to recent files (as opposed to Internet

Shortcuts). These link files are used on the “My Recent Documents” list in XP, and “Recent Items” in

Vista. They are to be found in the following locations,

Windows XP

\Documents and Settings\UserName\Recent and

\Documents and Settings\UserName\Application Data\Microsoft\Office\Recent

 Windows Vista

\Users\UserName\AppData\Roaming\Microsoft\Windows\Recent and

\Users\UserName\AppData\Roaming\Microsoft\Office\Recent

In addition to the dates within link files there may be Link Tracking information embedded in a link

file which can provide information about the origins, history and movement of the target file.

The file system observed has been NTFS.

Note on Experiments

I would be interested to receive comments on this paper and the results of any experiments that you

have conducted to test the following observations.

Any experiment will require you to capture 1) the file metadata for the target file prior to it being

accessed, followed by 2) the content of the link file itself after the access, together with the link file’s

metadata, and finally 3) the metadata of the target file after it has been accessed.

You should explain how you have ensured the experiment is forensically sound and the version of

the Windows OS.

 © Harry Parsonage September 2008, Updated Nov 2009, July 2010

2

Note on File Dates and Times

In forensic terms Accessed Dates are often of little value as a change does not necessarily mean the

file has been accessed by the user.

The NTFS file system delays updates to the last access time for a file by up to 1 hour after the last

access(1). Updates to the last access time can actually be switched off using the command line tool

fsutil (2) or by manually setting the value of the registry entry for NtfsDisableLastAccessUpdate to 1.

In Vista the default value is set to 1 (Last Accessed disabled) whereas in XP default is 0 (enabled).

According to Microsoft (1) “Timestamps are updated at various times and for various reasons. The

only guarantee about a file timestamp is that the file time is correctly reflected when the handle that

makes the change is closed.” It is not clear what NtfsDisableLastAccessUpdate actually means,

according to TechNet in one instance the value of 0 is defined to mean,

“updates the last-accessed timestamp of a file whenever that file is opened, “

and in another,

“when listing directories, NTFS updates the last-access timestamp on each directory it detects, and it

records each time change in the NTFS log.”

In reality it appears to be a combination of the two.

I have seen numerous references in forensic papers and presentations to the effect of this registry

change in Vista, including one comment that “NtfsDisableLastAccessUpdate is now 1, which means

no last access timestamp will be written at all”.

Disabling last access update does not mean that the Accessed Date on files does not get updated at

all; it means that it does not get updated on directory listing or file opening, but last accessed can

sometimes be updated when a file is modified and is updated when a file is moved between

volumes. The exact conditions under which a file’s Accessed Date is updated on modification are

unclear; it appears to vary depending upon file type and/or the application used to modify the file.

When references are made to XP or Vista below it is in the context that in XP

NtfsDisableLastAccessUpdate is disabled and in Vista it is enabled.

Some general notes on Link Files

In Vista the Recent List of documents on the Windows Start Menu can be cleared by right-clicking

Recent Items and selecting Clear Recent Items.

 © Harry Parsonage September 2008, Updated Nov 2009, July 2010

3

The option to store and display a list of recently opened files is in the Start Menu properties under

Privacy.

In XP this is accessed via the properties of the Start Menu.

 © Harry Parsonage September 2008, Updated Nov 2009, July 2010

4

The above settings can be examined in the windows registry at

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\Advanced

In XP

Start_ShowRecentDocs = 0 indicates the option to list Recent Documents is unchecked

Start_ShowRecentDocs = 2 indicates the option is checked

In Vista

Start_ShowRecentDocs = 0 and Start_TrackDocs = 0 indicates the option is unchecked

Start_ShowRecentDocs = 2 and Start_TrackDocs = 1 indicates the option is checked

Recent items are created when an application calls the Windows Shell Function

SHAddToRecentDocs() (3). Windows itself calls this function in certain cases, when activating a file in

explorer, and when using the file open and save dialog. Any application can call this function and add

a file to the Recent Items list. It is possible to clear the Recent Items list by calling

SHAddToRecentDocs() with the pv parameter set to NULL.

A registry setting can be used to prevent members of a file class being added to the Recent Items

list. An EditFlags value 0x00100000 can be set for the file association ProgID key in

HKEY_CLASSES_ROOT. For example, it is likely that you will find that the ProgID key for the .msc file

at HKEY_CLASSES_ROOT\mscfile looks like this,

So if you were to open services.msc for example, this setting prevents it appearing in the Recent

Items list. Change the value to zero and services.msc will appear on the Recent Items List when it is

opened.

 © Harry Parsonage September 2008, Updated Nov 2009, July 2010

5

Observation One

When a target file is opened and a link file is created, the created date of the link file remains the

date that target file was first accessed during the lifetime of that link file. If the target file is opened

subsequently, the Created Date of the link file remains the same.

The following example illustrates this observation.

Here are the properties of a link file, note the
Created Date 13/07/2008 17:38:30

These are the properties of the same link file
after the target file has been opened several
times. The Created Date is unchanged.

Observation Two

Once a link file has been created for a target file with a given filename, during the lifetime of that

link file, if another target file of the same name is accessed from a different location, the original link

file for that given filename is updated. Observation One applies and the Created Date for the link file

remains the same.

The link file name and the Created Date are the only artefacts from the original link file, all the

internal detail of the link file is overwritten, and it appears from observation that the same MFT file

record is used.

Observation Three

At the time a target file is opened the Created, Accessed and Modified dates of the target file are

read and stored within the associated link file at offset 0x1C. Each date is recorded in the FILETIME

data type (1) in 8 bytes. The dates are in the order Created, Accessed, Modified.

The following shows the Created Date embedded in the link file.

Observation Four

The Modified Date of the link file represents the time when the related target file was last opened

(as opposed to when it was closed).

 © Harry Parsonage September 2008, Updated Nov 2009, July 2010

6

Where the Created, Accessed and Modified dates of the link file are the same, this indicates that the

target file has not been opened since that time.

In Vista the Modified and Accessed times will always be the same as when the link file is modified

the Accessed time always gets updated. In XP the Accessed time could be different to the Modified

time.

Observation Five

Where a new file has been created in an application and then saved from it, and a link file has been

created, the link file will not contain any embedded dates relating to the target file.

The following shows the start of such a link file with no embedded dates.

The same generally applies where a picture, for example, is saved from a web page by right click,

Save Picture As.

It has been observed that while this appears to be the general case there have been instances where

a file has been saved in both ways described above and the link file has contained embedded dates.

This certainly happens when a new file is saved with an existing filename overwriting the original file.

In these circumstances the link file embedded dates will be taken from the existing file that is

overwritten.

Where a picture has been saved and there are no embedded dates in the link file, if it is

subsequently opened the link file will thereafter contain embedded dates.

The definite exception to the Observation Five is in the case of files saved by Microsoft Office

applications (2003 & 2007). When a file is created in an Office application and it is first saved, a link

file is created in both the user’s Recent folder and Office Recent folder. The link file in the Office

Recent folder appears from observation to always contain embedded dates when it is first created

but the one in the Recent folder contains no embedded dates.

The conclusion to be drawn from Observation Five is that if a link file does not contain embedded

dates that target file has not been opened since the link file was created. The converse is not

necessarily true but the content of the embedded dates will be an indicator, i.e. if they are almost

contemporaneous with the link file Created, Accessed and Modified then the target file has not been

opened since the link file was created.

 © Harry Parsonage September 2008, Updated Nov 2009, July 2010

7

Some Practical Examples

Example One

This on a Vista Operating System.

This file was a picture on a web page, it was viewed in the web page, the user has right clicked and

Save Picture As…, and then saved to My Pictures. The chronology is explained as follows.

Temp Int File – 6666[1].jpg Target File – 6666.jpg Link File – 6666.jpg.lnk

 Created 13/09/2008 10:17:00 Created 13/09/2008 12:42:29 Created 13/09/2008 12:42:29

 Modified 13/09/2008 10:17:00 Modified 13/09/2008 10:17:00 Modified 13/09/2008 12:42:29

 Accessed 13/09/2008 10:17:00 Accessed 13/09/2008 12:42:29 Accessed 13/09/2008 12:42:29

 The internal dates of the link file are zero bytes.

 The picture has been downloaded as part of the web page and the three file dates are the same.
 The Target Modified Date shows the time it was last modified on this computer when it was

saved in the cache on initial download.
 The Target Created Date shows the date the file was saved in My Pictures, the gap in time from

the Modified Date is the difference in time from when it was displayed initially in the web page
to when it was saved in My Pictures.

 The Link File three dates are when the Target File was saved in My Pictures.

The internal dates of the link file are all zero bytes and this, together with , indicate the file
has not been opened since saving.

 © Harry Parsonage September 2008, Updated Nov 2009, July 2010

8

Example Two

The following is found when the picture is subsequently opened in a viewer application; this might

be a common scenario in an investigation.

Internal Link File Dates

 Created 13/09/2008 12:42:29

 Modified 13/09/2008 10:17:00

 Accessed 13/09/2008 12:42:29

Temp Int File – 6666[1].jpg Target File – 6666.jpg Link File - 6666.jpg.lnk

 Created 13/09/2008 10:17:00 Created 13/09/2008 12:42:29 Created 13/09/2008 12:42:29

 Modified 13/09/2008 10:17:00 Modified 13/09/2008 10:17:00 Modified 19/09/2008 19:57:39

 Accessed 13/09/2008 10:17:00 Accessed 13/09/2008 12:42:29 Accessed 19/09/2008 19:57:39

 13/09/2008 10:17:00 The picture has been downloaded as part of the web page and the three
file dates are the same.

 13/09/2008 10:17:00 The Target Modified Date shows the time it was last modified on this
computer when it was saved in the cache on initial download.

 13/09/2008 12:42:29 The Target Created Date shows the date the file was saved in My Pictures,
the gap in time from the Modified Date is the difference in time from when
it was displayed initially in the web page to when it was saved in My
Pictures.

 13/09/2008 12:42:29 The Link File Created date is when the Target File was first accessed in My
Pictures.

 19/09/2008 19:57:39 The Modified and Accessed dates of the link file reflect the last time that
the Target File was opened.

 The Internal dates in the Link File are the same as the Target File dates and
this shows that it has not been modified the last time it was accessed.

 © Harry Parsonage September 2008, Updated Nov 2009, July 2010

9

Example Three

In the following case the Target File has been edited.

Internal Link File Dates

 Created 13/09/2008 12:42:29

 Modified 20/09/2008 19:55:23

 Accessed 20/09/2008 19:55:23

Temp Int File – 6666[1].jpg Target File – 6666.jpg Link File - 6666.jpg.lnk

 Created 13/09/2008 10:17:00 Created 13/09/2008 12:42:29 Created 13/09/2008 12:42:29

 Modified 13/09/2008 10:17:00 Modified 20/09/2008 20:01:59 Modified 20/09/2008 20:01:31

 Accessed 13/09/2008 10:17:00 Accessed 20/09/2008 20:01:59 Accessed 20/09/2008 20:01:31

 13/09/2008 10:17:00 The picture has been downloaded as part of the web page and the three
file dates are the same.

 13/09/2008 12:42:29 The Target Created Date shows the date the file was saved in My Pictures
 13/09/2008 12:42:29 The Link File Created date is when the Target File was first accessed.
 20/09/2008 19:55:23 The Link File internal Modified and Accessed Dates reflect the Target File

properties at the time the Target File was last opened and show it was
modified at 19:55:23.

 20/09/2008 20:01:31 The Modified and Accessed dates of the link file reflect the last time that
the Target File was opened.

 20/09/2008 20:01:59 The Target File Modified Date shows that the file was modified after it was
last opened.

 © Harry Parsonage September 2008, Updated Nov 2009, July 2010

10

Link Tracking and ObjectIDs

(4) The Distributed Link Tracking Service maintains its link to an object by using an object identifier

(ObjectID). An ObjectID is an optional attribute that uniquely identifies a file or directory on a

volume. An index of all ObjectIDs is stored on the volume. Rename, backup, and restore operations

preserve object IDs. However, copy operations do not preserve ObjectIDs, because that would

violate their uniqueness. ObjectIDs are not maintained on FAT systems or removable media.

A FileLocation(4) describes the location of a file at some point in time, it is made up of a VolumeID

and an ObjectID, and both are 16 bytes in length. The system keeps track of files that are moved and

so a PreviousFileLocation(4) in the same format can be stored. The low order bit of a VolumeID must

be zero, thus you should always find that the VolumeID is an even number.

On NTFS when a file is opened and a Link File is created, two FileLocations are embedded at the end

of the Link File. The last four bytes of the Link File are zero and the 64 preceding bytes contain two

FileLocations. The two are the same unless a file has been moved between two NTFS volumes.

This is a typical example,

The 16 bytes starting 3a 6c 1a is the VolumeID of the volume where the file resides. The next 16

bytes starting 92 1a 55 are the ObjectID of the file.

The ObjectID of the volume can be found in the $Volume file, in the OBJECT_ID attribute 40 00 00

00. The attribute, shown below, is 0x28 in length, the data stream is 0x10 in length and starts at

attribute offset 0x18.

The ObjectID of the file is found in the same way in the MFT record for the file (shown in the

following illustration).

 © Harry Parsonage September 2008, Updated Nov 2009, July 2010

11

On a live computer the ObjectIDs of a file can be queried using the command line tool fsutil –

fsutil objectid query logo-wide.gif

Object ID : 921a55508188dd11b8b3001d091660c9
BirthVolume ID : 3a6c1a4240279645aabd16217294df12
BirthObjectId ID : 921a55508188dd11b8b3001d091660c9
Domain ID : 00000000000000000000000000000000

The Domain ID will always be zero as it is currently unused(2).

In the following example of a Link File the original Target File above has been moved from one NTFS

volume to another on the same computer. The File ObjectID is retained but the Link File shows the

VolumeID of the volume to which the file has been moved.

If fsutil is used to query the file now the following result is seen –

Object ID : 921a55508188dd11b8b3001d091660c9
BirthVolume ID : 3b6c1a4240279645aabd16217294df12
BirthObjectId ID : 921a55508188dd11b8b3001d091660c9
Domain ID : 00000000000000000000000000000000

It does not report the ObjectID of the current volume on which the file resides but it can be seen

that the BirthVolumeID now starts 3b where it was previously 3a. As mentioned earlier the low order

bit of a VolumeID must be zero (3a=111010); this bit is used to indicate whether the file has been

 © Harry Parsonage September 2008, Updated Nov 2009, July 2010

12

moved. The low order bit represents the CrossVolumeMoveFlag which has a value of 1 if at any time

the file has been moved across volumes as it has in this case (3b=111011). Note that the

CrossVolumeMoveFlag is not replicated in the VolumeID embedded in the link file.

In the following example of a Link File the original Target File above has been moved from one NTFS

volume to another NTFS volume on a different computer. In this case the file is given a new file

ObjectID because it has been moved to a different computer.

If fsutil is used to query the file now the following result is seen –
Object ID : 3af8ece29f88dd11aecf0007e9271821
BirthVolume ID : 3b6c1a4240279645aabd16217294df12
BirthObjectId ID : 921a55508188dd11b8b3001d091660c9
Domain ID : 00000000000000000000000000000000

The new file ObjectID can be seen and the original VolumeID and ObjectID are retained as is the
CrossVolumeMoveFlag.

The above examples all relate to files that have been moved between volumes; where a file has
been copied the file ObjectID will be a new one and the Birth VolumeID will be the volume that the
file was copied to.

The ObjectID Structure

The ObjectIDs described above follow the Universally Unique Identifier (UUID) specification found in
RFC 4122(5), arguably defined in more detail in ITU-T Rec. X.667(6).

The ObjectIDs for the files can reveal forensically useful information which will be discussed in detail
later.

The file ObjectID is a time-based version which means it is created using a system time. The time is a
60 bit time value, a count of 100 nanosecond intervals of UTC since midnight at the start of 15th
October 1582. Using an example ObjectID the following is a breakdown according to the
specifications.

 © Harry Parsonage September 2008, Updated Nov 2009, July 2010

13

ObjectID 01DBD30F61FCDD11B5DF0003FF2E1821

Lower order time 01DBD30F61FCDD11B5DF0003FF2E1821

Middle order time 01DBD30F61FC

High order time and version 01DBD30F61FCDD11

Variant and sequence 01DBD30F61FCDD11B5DF

Node - MAC address 01DBD30F61FCDD11B5DF0003FF2E1821

The time values are in little endian order and taking out the version number the time value above is

01DBD30F61FCDD01

This can be converted back to the system time by taking away the offset between 15th October 1582
and the FILETIME epoch of 1st January 1601, and then using a time and date decoder for FILETIME.
The offset is 17 Days in Oct + 30 (Nov) + 31 (Dec) + 18 years and 5 leap days (6), in 100 nanosecond
units this is decimal 5748192000000000.

Doing this manually with a calculator –

01DBD30F61FCDD01 (Little Endian)
01DDFC610FD3DB01 (Big Endian)
Convert to decimal
134541057698552577
Subtract 5748192000000000
=
128792865698552577
Convert back to hex
01C9906DD1911B01 (Big Endian)
and convert using a date decoder
=
2009-02-16 19:36:09

Doing the same for the Sequence –
(The Variant bits (2 bits) followed by the high-order bits of the Clock Sequence (6 bits) and the low-
order bits of the Clock Sequence (8 bits))

Sequence = B5DF
Binary = 1011010111011111
The most significant two bits are the Variant (not of any significance)
And the remainder is the Sequence number
11010111011111
= 13791 decimal

The sequence value used in the generation of the ObjectID is taken from the 14 lowest order bits of
the registry value –

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc\UuidSequenceNumber

The MAC address used in the ObjectID is the address of the primary network card in the computer.
For systems with no MAC address a random number may be used. In the event that the value in the
ObjectID appears to be something other than a MAC address it may be necessary to refer to the

 © Harry Parsonage September 2008, Updated Nov 2009, July 2010

14

detail of the specifications as several alternative values to the MAC address may be used for this part
of the ObjectID.

I have discussed just a few of the lesser well known parts of the link file but there is a lot more

information contained within every link file; Microsoft has made the structure of the link file

available as part of the MSDN Open Specifications.(7)

How can all this information help me in the examination of a computer?

The first consideration is how to extract the information from the link files. It may be manageable to
manually decode a small number of link files but if you want to recover information from all the link
files on a computer then an automated process will be required. Your forensic software will probably
be able to extract the main details such as file path, volume name and volume serial number of the
target file, but to get maximum value from the link files you may need more.

Sanderson Forensics’ LinkAlyzer program (8) will carve link files from Disk/Volume/Folder/Encase
Image and parse out the details contained within the link file (times and dates, paths, etc) and also
decode ObjectIDs presenting the MAC address, time and sequence number.

There is an Enscript available from the Guidance Enscript Resource Centre (9) which extracts
ObjectIDs from the MFT and reports the date, sequence, MAC address, associated filename and MFT
record of each ObjectID. A sample output from this script is shown below –

------------Case: MyTestCase---
28/Sep/09 07:03:29 Seq: 1944 Mac: 00-50-56-C0-00-08 (Entry: MyTestCase\MyDriveImage\ComputerTriage.doc FileID: 38)
28/Sep/09 07:03:29 Seq: 1944 Mac: 00-50-56-C0-00-08 (Entry: MyTestCase\MyDriveImage\ComputerTriage.docx FileID: 39)
28/Sep/09 07:03:29 Seq: 1944 Mac: 00-50-56-C0-00-08 (Entry: MyTestCase\MyDriveImage\12345.bmp FileID: 40)
28/Sep/09 07:03:29 Seq: 1944 Mac: 00-50-56-C0-00-08 (Entry: MyTestCase\MyDriveImage\123456.bmp FileID: 41)
28/Sep/09 07:03:29 Seq: 1944 Mac: 00-50-56-C0-00-08 (Entry: MyTestCase\MyDriveImage\1234567.bmp FileID: 35)
28/Sep/09 07:03:29 Seq: 1944 Mac: 00-50-56-C0-00-08 (Entry: MyTestCase\MyDriveImage\Scan 004.jpg FileID: 36)
28/Sep/09 07:03:29 Seq: 1944 Mac: 00-50-56-C0-00-08 (Entry: MyTestCase\MyDriveImage\screenshot.bmp FileID: 37)
--

Perhaps you have a loose hard drive and you want to identify which computer it was installed in.

The presence of MAC addresses in ObjectIDs can be a useful forensic artefact in cases where it is

necessary to identify the originating computer of loose hard drives, or identify periods when a hard

drive has been moved between computers.

If the file system is NTFS then the ObjectID in the link files will contain a MAC address from which

you may be able to identify the computer that the hard drive was connected to.

If you suspect the hard drive was moved between computers, again you might be able to identify the

periods during which it was in different computers from the MAC addresses in the ObjectIDs.

It is interesting to note that the MAC address in the ObjectID will generally be that of the primary

network card; however other MAC addresses have been observed. For example when a mobile

phone (Windows Mobile OS) is connected to the host computer via Active Sync the MAC address of

the phone has been observed to be used in the creation of the ObjectIDs rather than that of the

 © Harry Parsonage September 2008, Updated Nov 2009, July 2010

15

host’s network adaptor. In the case of a Windows Mobile device the MAC address is one provided by

the Active Sync software and it will commonly be 80:00:60:0F:E8:00 . The MAC address of a VMware

Virtual Ethernet Adapter has also been found in ObjectIDs e.g. 00:50:56:C0:00:08 (00:50:56 is one of

several Organizationally Unique Identifiers registered to VMware which can be found in the public

listings(10)). So finding a MAC address other than that of the host computer does not necessarily

place the hard drive in another computer.

 Perhaps you suspect the computer clock has been tampered with.

In pre-Vista Windows OS the sequence numbers within the ObjectIDs will enable you to put the link

files in chronological order and if the dates and times are anomalous it should become apparent.

In Windows XP the UuidSequenceNumber is incremented at system boot so in a case where the

system clock has been altered and moved backwards and forwards the sequence value might reveal

that, and indicate the order in which some files were originally accessed.

The following screenshot shows part of the information carved from a number of link files. It shows

the RemainingPathName, FileObjectID, and the Date and Sequence decoded from the ObjectID. It

can be seen that the sequence numbers are in corresponding order with the dates.

The decoded date represents the system date and time when the computer was booted at the start

of that session in which the ObjectID was created, that date will remain the same in all ObjectIDs

created during that boot session. In the same way the sequence value will remain the same in that

session.

If the computer clock had at some time been changed to an earlier date the sequence value would

increment when next rebooted but the date embedded in any ObjectID created would be out of

synchronisation. This is shown in the example below.

 © Harry Parsonage September 2008, Updated Nov 2009, July 2010

16

It has been noted that in XP the sequence numbers often appear to be incremented by two. In

relation to the Clock Sequence “The Remote Procedure Call” specification(11) states “The clock

sequence value must be changed whenever the UUID generator detects that the local value of UTC

has gone backward; this may be due to normal functioning of the DCE Time Service.” It has been

observed that the action of the Windows Time Service setting the clock backwards to the correct

time has caused the UuidSequenceNumber in the registry to be incremented by one. At the same

time this change to the sequence number was not reflected in the ObjectIDs subsequently

generated in that same boot session. When the computer was rebooted the UuidSequenceNumber

was incremented again and then any ObjectIDs generated reflected the increment of two in the

sequence value.

From observation in Vista systems the sequence numbers are randomised and so the same principle

does not apply. This has been confirmed by Microsoft (12) “In Vista and later versions of the OS, due

to some un-intended call pattern we are unable to read the UuidSequenceNumber that is stored in

the registry. Thus on every boot we will create a new one. This is why the UuidSequenceNumber is

not incremented on boot as happens on pre-Vista releases of the OS.”

Perhaps you want to try and work out the order in which some files were first accessed during a

particular boot session.

An ObjectID is generated for a file when it is first opened in an application via the File/Open dialog or

by double-clicking in Windows Explorer. Where an application is open and a file is created and then

saved from the application an ObjectID is generally not generated. However this seems to be

application specific, creating a txt in Notepad, a jpg and bmp from Paint, and a pdf from Word (2007)

did not cause an ObjectID to be generated for the file. Creating a Word document in Word (2007)

and an xlsx in Excel (2007) and a text document in Open Office (v2) caused an ObjectID to be

generated.

In the example below the column headed “NewDate” shows the time and date decoded from the

ObjectID to its left, the column headed “NewSequence” shows the Sequence value from the

ObjectID. The fact these two values are the same indicates that the ObjectIDs were generated during

the same boot session. Every new ObjectID generated is incremented by one from the previous

value; this can be seen in the least significant bytes which are the first two bytes reading left to right.

In order to make the incrementing of the ObjectID easier to recognise I have converted the two least

significant bytes to decimal in the column headed “LastTwoBytes”.

 © Harry Parsonage September 2008, Updated Nov 2009, July 2010

17

The last four files listed were all created in Notepad, saved, and then subsequently opened to

generate the ObjectIDs. They were opened in the order indicated by their names and it can be seen

that the ObjectIDs are all consecutive in the correct order.

You could identify when and how often the computer has been started up.

Carve all the link files from the machine and then decode the ObjectIDs. Identify those link files that

have been created by the user on that machine. To do that examine the MAC addresses and the

date and time decoded from the ObjectIDs; some of the link files will probably be program shortcuts

that have been created by the software developer and will be nothing to do with the current user.

Sort the list by the decoded date order and these are the times and dates the computer has been

started. Bear in mind that a link file has not necessarily been created every time the computer has

been used, so you will not be able to use the information to say a computer had not been started

rather when it had been started.

A more comprehensive picture might be obtained by carving all the ObjectIDs from the MFT and

decoding those.

You can identify if files have been moved across volumes

If a file is moved from one NTFS volume to another and then opened after it has been moved, the

link file will contain both the ObjectID of the Birth Volume and ObjectID of the current Volume.

The above illustration shows the file testodt.odt has been moved from a volume with the ObjectID

starting 8E8F.

Perhaps you have a link file and want to know the size of the target file

The file size is found in 4 bytes directly after the Created Accessed and Modified times. The value

represents the file size at the time the file was last opened.

Just note here you might occasionally find a file size that is anomalous as the file size is stored as an

unsigned integer in 4 bytes and where the file size is over 0xFFFFFFFF the 32 least significant bits of

the file size are recorded.

For example a file of a size 15,841,593,856 bytes = 03 B0 3B 8A 00 will be recorded as B0 3B 8A 00 =

2,956,691,968 (which will be seen little endian in the link file as 00 8A 3B B0).

 © Harry Parsonage September 2008, Updated Nov 2009, July 2010
18

Perhaps you want to know if a file has been renamed and what the previous filename was

Where a file has been created and subsequently opened such that a link file has been created, if the file is then renamed and opened again with the new name a new link

file will be created. However the target file itself remains the same file so its ObjectID which is embedded in both link files will be the same. By carving link files and looking

for matching ObjectIDs it may be possible to find renamed files and identify the different names. By examining the dates and times of the link files and internal dates it may

be possible to identify the order in which the file names existed.

The following is an example of two links files created in the way described above. The two different file names can be seen and both contain the same ObjectIDs.

 © Harry Parsonage September 2008, Updated Nov 2009, July 2010

19

The details of the two link files above are as follows –

The link file Created, Modified and Accessed dates indicate which file name came first. The

embedded dates are the same indicating the target file itself has not been modified.

It can be seen that the File ObjectIDs are identical (the Volume ObjectID would be the same for all

files on that volume).

It may be possible to find MFT artefacts for the files by searching for the File ObjectID and so identify

further information about the file.

The Short Version

So in summary -

If you have a Target File and a Link file you potentially have the following history, subject to the

details discussed above,

The Created Date of the Link File – the date the Target File was first accessed.

The Link File internal dates which are a snapshot of the Target File’s three dates before it was last

opened.

The Modified Date of the Link File which is the time the Target File was last opened.

The Modified Date of the Target File which is when the Target File was last changed.

Link Files for Target Files on NTFS volumes can contain the VolumeID of the volume and ObjectID of

the Target File, and these can show if files have been moved between NTFS volumes. The ObjectIDs

can also show the order of ObjectID creation and the MAC address of the host computer.

Finally, the observations described in this paper will only be certain in the context and at the time in

which they were made. Experience shows that the dynamic nature of computer technology means

the findings can only be a guide and that the observations must be tested in the environment under

examination. A wise investigator will never just accept what he reads no matter from what source;

the comment mentioned earlier that inaccurately states “NtfsDisableLastAccessUpdate is now 1,

LinkFile Created 16/07/2010 17:50:01 16/07/2010 17:50:22

LinkFile Modified 16/07/2010 17:50:01 16/07/2010 17:50:22

LinkFile Accessed 16/07/2010 17:50:01 16/07/2010 17:50:22

Embedded Created 16/07/2010 17:26:22 16/07/2010 17:26:22

Embedded Modified 16/07/2010 17:26:22 16/07/2010 17:26:22

Embedded Accessed 16/07/2010 17:26:22 16/07/2010 17:26:22

FileLength 4 4

RelativePath ..\..\..\..\..\Desktop\First Filename.txt ..\..\..\..\..\Desktop\Second Filename.txt

Volume ObjectID 70DA1AD4B333AE4D801AC291D1E3A32B 70DA1AD4B333AE4D801AC291D1E3A32B

File ObjectID 2ADF0B95F290DF118B63005056C00008 2ADF0B95F290DF118B63005056C00008

GUID Date 16/07/2010 15:55:40 16/07/2010 15:55:40

GUID MAC 00:50:56:C0:00:08 00:50:56:C0:00:08

GUID Sequence 2915 2915

 © Harry Parsonage September 2008, Updated Nov 2009, July 2010

20

which means no last access timestamp will be written at all” comes from the author of a book on

computer forensics. I hope you will find this paper useful in providing a starting point for your own

testing and observations.

If the information in this paper helps you in an investigation please let me know, I would be pleased

to learn my efforts have been put to some practical use, as that was the purpose of writing it.

I can be contacted at digitalforensics@ my domain.

Bibliography
1. Microsoft. Win32 and Com Development Windows System Information - File Times. MSDN

Library. [Online] http://msdn.microsoft.com/en-us/library/ms724290.aspx.

2. —. Windows 2008 Command Reference - fsutil. Technet Library. [Online]

http://technet.microsoft.com/en-us/library/cc753059.aspx.

3. —. Windows Shell Reference. MSDN Library. [Online] http://msdn.microsoft.com/en-

us/library/bb762105(VS.85).aspx.

4. —. [MS-DLTM] Distributed Link Tracking: Central Manager Protocol Specification.

5. The Internet Engineering Task Force. RFC 4122. [Online] http://rfc.net/rfc4122.html.

6. International Telecommunication Union. Information technology - Open Systems Interconnection

- Procedures for the operation of OSI Registration Authorities: Generation and registration of

Universally Unique Identifiers (UUIDs) and their use as ASN.1 Object Identifier components. [Online]

http://www.itu.int/ITU-T/studygroups/com17/oid.html.

7. Microsoft. [MS-SHLLINK]: Shell Link (.LNK) Binary File Format. MSDN. [Online] [Cited: 21 Sept

2009.] http://msdn.microsoft.com/en-us/library/dd871305%28PROT.10%29.aspx.

8. Sanderson Forensics. Products/LinkAlyzer. [Online] [Cited: 21 Sept 2009.]

http://www.sandersonforensics.com.

9. Guidance Software. Enscript Resource Centre. Guidance Support Portal. [Online]

https://support.guidancesoftware.com/forum/downloads.php?do=file&id=426.

10. Institute of Electrical and Electronics Engineers. Organizationally Unique Identifier Assignments.

[Online] [Cited: 28 Sept 2009.] http://standards.ieee.org/regauth/oui/index.shtml.

11. The Open group. CDE 1.1: Remote Procedure Call . [Online] [Cited: 28 September 2009.]

http://www.opengroup.org/onlinepubs/9629399/toc.htm.

12. Engineer, Microsoft. Personal email communication with Harry Parsonage.

i

